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Abstract Actinomycetes are a rich source of natural

products, and these mycelial bacteria produce the majority

of the known antibiotics. The increasing difficulty to find

new drugs via high-throughput screening has led to a

decline in antibiotic research, while infectious diseases

associated with multidrug resistance are spreading rapidly.

Here we review new approaches and ideas that are cur-

rently being developed to increase our chances of finding

novel antimicrobials, with focus on genetic, chemical, and

ecological methods to elicit the expression of biosynthetic

gene clusters. The genome sequencing revolution identified

numerous gene clusters for natural products in actinomy-

cetes, associated with a potentially huge reservoir of

unknown molecules, and prioritizing them is a major

challenge for in silico screening-based approaches. Some

antibiotics are likely only expressed under very specific

conditions, such as interaction with other microbes, which

explains the renewed interest in soil and marine ecology.

The identification of new gene clusters, as well as chemical

elicitors and culturing conditions that activate their

expression, should allow scientists to reinforce their efforts

to find the necessary novel antimicrobial drugs.

Keywords Silent antibiotic � Elicitor � Soil ecology �
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Introduction

The discovery of penicillin by Sir Alexander Fleming [42]

opened up a completely new era of chemotherapy. The

discovery of numerous antibiotics from primarily soil

microorganisms and the near eradication of diseases such

as tuberculosis led to the concept that infectious diseases

may be something of the past [53]. However, the emer-

gence of infectious diseases involving multidrug resistant

(MDR) bacterial pathogens since the 1980s means that

bacterial infections are still a major threat for human

health. According to the World Health Organization

(WHO), around 440,000 new cases of multidrug-resistant

tuberculosis (MDR-TB) are found annually, causing more

than 150,000 deaths. Extensively drug-resistant tuberculo-

sis (XDR-TB) has now been reported in 64 countries to

date [159]. The explosive increase in infections by patho-

gens such as methicillin-resistant Staphylococcus aureus

(MRSA), vancomycin-resistant Enterococcus faecium

(VRE) and fluoroquinolone-resistant Pseudomonas aeru-

ginosa is estimated to cause approximately 19,000 deaths

per year in the US [70], and the most recent occurrence of

pan-antibiotic-resistant infections pose the grave threat of

completely untreatable infections [8].

Filamentous microorganisms (fungi and bacteria of the

order of Actinomycetales) are the major source of sec-

ondary metabolites, producing some 90 % of all known

antibiotics [15, 100]. Some two-thirds of all antibiotics are

produced by actinomycetes, the majority of which by

members of the genus Streptomyces. Until now, tens of

thousands of natural antimicrobial products have been

isolated from microbial sources, and still these likely rep-

resent only a tiny portion of the repertoire of bioactive

compounds that can potentially be produced [15, 100].

Also, the microbial biodiversity of soil and marine
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environments is enormous, with millions of fungi and

bacteria likely to be present, of which we have seen only

the tip of the iceberg [119].

The decline of high-throughput screening of antibiotics

and silent gene clusters

As early as the 1990s, it was predicted that the future of

antibiotic discovery might not lie in high-throughput

screening (HTS; [71]) or combinatorial chemistry [97].

Perhaps the best known example is the HTS effort con-

ducted by GlaxoSmithKline, where millions of compounds

were screened in many HTS campaigns, with only mar-

ginal success [117]. Underlying causes for the lack of

success include the fact that many of the essential targets in

the bacterial cell are not ‘‘druggable’’, that the molecules

identified by HTS do not always have the ideal drug

properties as defined in Lipinski’s rule-of-five [78], and

that molecules in compound libraries are biased for use in

pharmacology and do not have the molecular complexity of

naturally occurring secondary metabolites.

Antibiotics not yet discovered have been estimated to be

produced at frequencies of less than one per million in

fermentation broths from randomly chosen actinomycetes

[10, 12]. The situation is often hindered by the fact that

often actinomycetes produce high levels of several antibi-

otics, which will obscure the production of less well

expressed or less bioactive antibiotics. How can we stand a

chance to find anything novel when BigPharma fails to find

them in their comprehensive screening efforts? For one,

actinomycetes are soil or marine bacteria, and one

approach most likely lies in the direction of ecology. In

other words, if we understand the temporal and conditional

cues that activate antibiotic production in situ, this can then

be applied to improve screening efforts. A second aspect

that is now available is the information derived from whole

genome sequencing and the connected genomics technol-

ogies. Sequencing the genomes of actinomycetes estab-

lished the presence of many more biosynthetic clusters for

secondary metabolites than originally anticipated. For

example, it has been known for decades from the pio-

neering work of David Hopwood and many of his col-

leagues that the model actinomycete Streptomyces

coelicolor produces four antibiotics, namely actinorhodin

(Act), undecylprodigiosin (Red), calcium-dependent anti-

biotic (Cda), and the plasmid-encoded methylenomycin

(Mmy) [51, 53]. Still, despite 50 years of intensive

research, it came as a complete surprise when the S. coe-

licolor genome sequence [14] revealed the presence of

many previously unidentified biosynthetic gene clusters

[25, 53], including one for a likely antibiotic called cryptic

polyketide (Cpk; [116]). It rapidly became clear that other

actinomycetes also have extensive arsenals of secondary

metabolites [59, 109, 111, 112, 147]. It therefore appears

that the potential of these organisms for novel drug pro-

duction is much larger than originally anticipated. This has

led to extensive research into the applied genomics relating

to what is generally referred to as cryptic, silent, or

sleeping antibiotics (reviewed in [46, 94, 99, 152, 169]).

Therefore, there are likely many yet-unidentified com-

pounds out there, which were missed either because the

gene clusters that specify them are not expressed at suffi-

ciently high levels or because the compounds have lower

specific activity than the readily screenable antibiotics and

may require modification to become more active. Here we

review in particular global approaches for antibiotic min-

ing, with the activation of poorly expressed antibiotic

biosynthetic gene clusters in mind.

Regulation of antibiotic production

The regulation of antibiotic production involves multiple

regulatory cascades and networks. Knowledge on the reg-

ulatory genes can be applied in approaches to activate

antibiotic production but is also very useful in terms of

localizing biosynthetic gene clusters (see below). Although

the number and variety of genes involved vary from spe-

cies to species, certain features are common. Global reg-

ulators almost by definition have a wide-ranging impact on

global transcription patterns, but also ‘‘cluster-situated

regulators’’ (CSRs) may have a broader impact than only

on the cluster they are associated with [58]. Genes involved

in antibiotic production are generally organized in bio-

synthetic gene clusters, consisting of several transcription

units. Besides the obvious advantage of coordinated control

of biosynthesis, export, and resistance, the additional

evolutionary driving force behind such linkage is most

likely an ecological one, as it allows the transfer of com-

plete gene clusters during genetic exchange in the habitat.

The act gene cluster as model system

Arguably the best studied antibiotic gene cluster is act in S.

coelicolor, for the type-II PKS actinorhodin (Act). This

genetic system is a beautiful illustration of the possible

complexity of the regulatory networks involved in the

control of antibiotic production, and we highlight common

features to illustrate the relevant concepts, in particular

because most pleiotropic regulators have an effect on Act

production in S. coelicolor. For more extensive overviews

of the control of antibiotic production, we refer to reviews

elsewhere [16, 79, 151]. Several general themes related to

the control of act production are highly relevant for

approaches to wake up sleeping antibiotics, and are worked

out in more detail in the following sections of this review.
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The act gene cluster consists of around 20 genes, orga-

nized in several transcription units [82]. ActII-ORF4 is the

cluster-situated and pathway-specific regulator of the act

gene cluster that binds to target sequences of the act pro-

moters, with an N-terminal helix-turn-helix DNA binding

domain and a C-terminal transcriptional activation domain

[62]. ActII-ORF4 is a member of a family of pathway-spe-

cific activator proteins termed Streptomyces antibiotic regu-

latory proteins or SARPs [160]. SARP regulators are

typically expressed in a growth phase-dependent manner and

at a high level [16], and there appears to be little or no control

downstream. This is exemplified by promoter probing

experiments using redD—the pathway-specific activator

gene for the red cluster—as a reporter; which demonstrated

that both timing and level of expression of the red cluster is

directly proportional to the expression of RedD, even in early

vegetative mycelia or in aerial hyphae, where the cluster is

normally not expressed [154].

Many pleiotropic regulators characterized so far are

required only under specific environmental conditions [17],

and several of these control act gene expression. DasR is a

GntR-family regulator that controls among others amino

sugar metabolism and transport and the chitinolytic system

[29, 30, 124, 140]. DasR is a highly pleiotropic regulator,

and in a recent environmental study, microarray data on the

dasR null mutant in soil-grown cultures in the presence of

chitin revealed some 700 genes that were differentially

expressed [98]. DasR connects the control of primary and

secondary metabolism by directly controlling the tran-

scription of actII-ORF4, the pathway-specific activator

gene for actinorhodin biosynthesis (Fig. 1), and redZ, a

response regulator required for undecylprodigiosin pro-

duction. The DasR regulon and its use as target for global

approaches to induce antibiotic production is discussed in

detail below.

AtrA is a TetR-family protein that is required for the

transcription of actII-ORF4 [148], and in turn responds to

the level of phosphate as it is repressed by the PhoRP

system [130]. Further complexity is offered by Rok7B7, a

member of the ROK family of proteins, which are

Fig. 1 Pleiotropic and nutrient-mediated control of actinorhodin

production in S. coelicolor. N-acetylglucosamine (GlcNAc) enters the

cell and is subsequently phosphorylated via the GlcNAc-specific

phosphoenolpyruvate-dependent phosphotransferase system (PTS),

composed of intracellular PTS proteins EI, HPr, and EIIA, and the

GlcNAc-specific components EIIB (NagE2) and EIIC (NagF).

Phosphoenolpyruvate (PEP) is the phosphodonor. N-acetylglucosa-

mine-6-phosphate (GlcNAc-6P) is then deacetylated by GlcN-6P

deacetylase NagA to glucosamine-6-phosphate (GlcN-6P), the effec-

tor molecule that inhibits DasR DNA-binding. This results in

derepression of actII-ORF4, the pathway-specific transcriptional

activator gene for the actinorhodin biosynthetic gene cluster. This

represents a complete signaling cascade from extracellular nutrients

to the activation of actinorhodin production. The global regulators

AtrA and Rok7B7 have opposite activities to DasR, with AtrA and

Rok7B7 both activating actinorhodin production, and at least AtrA

also activating GlcNAc transport, thereby antagonizing DasR.

Rok7B7 is likely activated by a xylose-derived C5 sugar transported

via the ABC transporter XylFGH. For details and references, see the

text. The effect of GlcNAc on antibiotic production is shown in Fig. 2
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predominantly sugar regulatory proteins and sugar kinases,

including glucose kinase [146]. Rok7B7 pleiotropically

affects primary and secondary metabolism, and is required

for actinorhodin production [139]. Introduction of an

ortholog of rok7B7 called rep, obtained from a metage-

nomic library, appeared to be an effective way of activating

antibiotic production in S. coelicolor [90]. Recent evidence

suggests that Rok7B7 may be activated by a derivative of

the C5 sugar xylose [139]. The activity of DasR, Rok7B7,

and perhaps also AtrA is subject to nutrient control at the

posttranslational level, and the metabolic status of the cell

will therefore largely determine their contributions to the

control of antibiotic production.

Other pleiotropic antibiotic regulators involved in the

control of actII-ORF4 are AfsR and PhoP. AfsR contains

an N-terminal SARP domain and is conditionally required

for Act and Red production [43]. AfsR binds to the pro-

moter of the downstream located afsS (also called afsR2)

and activates its transcription [75]. While the precise

function of afsS is unclear, it activates antibiotic production

in many streptomycetes, and is therefore an attractive tar-

get for the activation of antibiotic production. PhoP, which

represses actinorhodin production in response to phos-

phate, probably acts indirectly, and perhaps by repressing

afsS. The role of PhoP in the control of antibiotic pro-

duction is discussed in more detail in the next section.

Interestingly, deletion of the gene for Streptomyces inte-

gration host factor (sIHF) also effects enhanced actinorhodin

production [166]. IHF assists in cell processes that require

higher-order protein complexes, e.g., DNA replication, tran-

scriptional regulation, and site-specific recombination [44].

Again, the effect of sIHF on antibiotic production is most

likely direct, as EMSAs showed direct binding to the redD

promoter region [166]. Finally, the two-component system

DraR-K controls antibiotic biosynthesis in S. coelicolor in

response to high concentrations of nitrogen [168]. Phospho-

DraR enhances the production of Act but represses yellow

pigmented type I polyketide (yCPK) biosynthesis via direct

control of the pathway-specific activator genes actII-ORF4

and cpkO, respectively, while repression of Red biosynthesis

is indirect [168]. Besides the selection of regulatory proteins

mentioned above, a surprisingly large number of other genes

affect the expression of actII-ORF4 [79, 151]. This highlights

the amazing regulatory complexity for a gene cluster that

apparently specifies a compound with weak antibiotic activity,

suggesting that actII-ORF4 and/or the act cluster may have a

more important physiological role than currently anticipated.

Genetic control in response to carbon, nitrogen,

and phosphorous

Most secondary metabolites are produced in a growth

phase-dependent manner, typically during the onset of

development, corresponding to transition phase and early

stationary phase in submerged cultures. Nutrient compo-

sition and concentration within media not only affects

growth rate but also influences complex changes in global

gene regulation, reflecting the range of conditions that

trigger the production of different antimicrobials in nature

[16, 128, 151].

Carbon sources have a major impact on the expression

of biosynthetic genes and morphological development of

microorganisms. Carbon catabolite repression (CCR)

occurs when media contains mixtures of rapidly and slowly

used carbon sources and is a regulatory mechanism com-

monly observed in bacteria [22, 45, 145]. After exhausting

the preferred carbon source, bacteria turn to the ‘‘second-

best’’ carbon source, and this often correlates temporally

with the onset of antibiotic production, which is associated

with growth cessation [36]. Glucose is a preferred carbon

source for many actinomycetes and effects global repres-

sion of antibiotic production [37, 118], which is why in

industrial fermentations, polysaccharides (e.g., starch),

oligosaccharides (e.g., lactose) and oils (e.g., soybean oil,

methyloleate) are commonly used.

The central protein that controls CCR in streptomycetes

is glucose kinase (Glk), with deletion of the gene for glu-

cose kinase resulting in global derepression of carbon uti-

lization [5, 6]. Glk expression is constitutive, and its

activation takes place posttranslationally in glucose-grown

cultures, but not when cultures are grown on non-repress-

ing sugars [149]. This suggests that interfering with the

activation of the CCR activity of Glk, while leaving gly-

colysis unchanged, should enable antibiotic production in

glucose-grown cultures, which would be a major advantage

for industrial fermentations. To address this, a compre-

hensive quantitative proteome analysis was performed on

cultures of S. coelicolor and its glkA mutant grown in

minimal media with mannitol or fructose and with or

without additional glucose, which revealed the response of

nearly all enzymes in central metabolism and most anti-

biotic-related pathways. This surprisingly showed that

while CCR and inducer exclusion of the majority of the

primary and secondary metabolic pathways was mediated

in a Glk-dependent manner (as expected), glucose repres-

sion of the biosynthesis of the c-butyrolactone Scb1 and

the responsive cpk gene cluster for the cryptic polyketide

Cpk is independent of Glk [47]. Other cryptic pathways

could perhaps also be controlled in an entirely different

way, providing a possible new lead for the activation of

poorly expressed antibiotics.

High concentrations of nitrogen sources such as

ammonium or amino acids also suppress the biosynthesis

of secondary metabolites [1, 86]. Complex fermentation

media therefore include proteins as nitrogen source and

defined media slowly assimilated amino acids, so as to
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ensure optimal antibiotic production. For example, strep-

tomycin production by Streptomyces griseus is favored by

growth in both soybean meal and proline in combination

with low concentrations of additional ammonium salts [39,

162]. Production of aminoglycoside antibiotics was also

repressed by ammonium salts, whereas nitrate and certain

amino acids stimulated their production [132].

Biosynthesis of antibiotics and other secondary metab-

olites is transcriptionally repressed by easily utilized

phosphate sources [85]. The depletion of phosphate in the

environment triggers the biosynthesis of secondary

metabolites but represses growth [86]. Generally, phos-

phate concentrations above 0.5 mM stimulate growth at the

expense of secondary metabolism, while, conversely,

below this threshold the production of secondary metabo-

lites is favored, including antibiotic production [156]. This

activation of antibiotic production is among others gov-

erned via autoregulatory signals [54, 101, 164]. A major

system for the global control of gene expression in

response to the phosphate concentration is the two-com-

ponent regulatory system PhoRP [136]. PhoRP is wide-

spread in prokaryotes and is involved in the control of

antibiotic production in among others S. coelicolor and

Streptomyces lividans (Act, Red; [129, 135]), S. griseus

(candicidin; [87]), S. natalensis (pimaricin; [95]) and in

Streptomyces rimosus (oxytetracycline; [92]), although

phosphate-mediated repression is a general phenomenon

[88].

Sensory histidine kinase PhoR is prevented from phos-

phorylating its cognate response regulator PhoP via its

interaction with the high-affinity phosphate transport sys-

tem Pst, which in turn is activated by PhoR. Thus, only

little phosphate transporter is produced when sufficient

phosphate is available. However, during phosphate limi-

tation, PhoR is released and phosphorylates PhoP, resulting

in enhanced phosphate transport and utilization [85, 136].

Recent global analysis of PhoP binding sites by immuno-

precipitated genomic DNA hybridized to DNA microarrays

(ChIP-chip) showed that besides controlling the phosphate

regulon, PhoP also transiently shuts down central meta-

bolic pathways [3]. PhoP directly controls the pathway-

specific regulatory gene cdaR for Cda production in S.

coelicolor, but control of actinorhodin and undecylpro-

digiosin production is most likely indirect, as there are no

obvious PhoP-binding sites in the promoter regions of the

pathway-specific regulatory genes actII-ORF4 and redD/

redZ, respectively, and PhoP failed to bind to the promoters

[85]. However, PhoP may affect these antibiotics indirectly

via the control of afsS [130].

In addition, PhoP plays a major role in the cross-talk

between N- and P-metabolism, via the repression of glnR,

for the global nitrogen regulator GlnR [89, 126]. Therefore,

PhoP takes up a central role in the junction between

primary and secondary metabolism, and targeting this

system is an attractive approach to pleiotropically affect

antibiotic production.

Genetic tools for the activation of antibiotic production

Enhanced expression of SARP regulators is an effective yet

strain-specific approach for the overexpression of the gene

clusters they control. However, the associated gene clusters

are often ‘‘household’’ antibiotics, i.e., they are expressed

under most growth conditions, typically during the transi-

tion from late exponential to stationary growth [16]. This

suggests that most antibiotics specified by SARP-con-

trolled gene clusters will have been identified in HTS

screening efforts by BigPharma.

Recently, a new class of regulatory genes was identified,

which encode proteins with similarity to LAL (Large ATP

binding regulators of the LuxR family) proteins [72].

Constitutive expression of a pathway-specific LAL regu-

lator as CSR for a giant (150 kb) type-I modular polyketide

synthase (PKS) gene cluster in Streptomyces ambofaciens,

resulted in the production of a number of novel 51-mem-

bered glycosylated macrolides, named stambomycins A–D

[72]. Since genome sequencing identified LAL regulators

that are associated with several yet unidentified gene

clusters, constitutive expression of such CSRs represents a

promising new approach for natural product discovery.

The enhanced expression of afsS appears to be an

effective and generally applicable way of activating anti-

biotic production. Its enhanced expression stimulates

antibiotic production in among others S. coelicolor [91],

S. lividans [157], S. avermitilis [74], and S. noursei [131].

The overexpression of AfsR also increased antibiotic pro-

duction, for example in S. coelicolor [43], S. peucetius

[115], and S. venezuelae [81], which is perhaps mediated

via activation of afsS [75]. The effect of the afsS ortho-

logue ssmA on nistatin production by S. noursei suggests

that perhaps afsRS act in a carbon source-dependent man-

ner [131].

Ribosome engineering

An effective and very promising way to activate antibiotic

production is manipulation of the strains via so-called

‘‘ribosome-engineering’’, developed by Kozo Ochi and

colleagues (recently reviewed in [106, 108]). Ribosome

engineering is a method that uses sub-lethal concentrations

of antibiotics that target either the ribosome itself or RNA

polymerase (RNAP). Drug-resistant mutants enforced by

rifampicin have mutations in rpoB (for the b-subunit of the

RNAP), while those induced by streptomycin carry muta-

tions in rpsL for ribosomal protein S12 or also in rsmG for
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a 16S rRNA methyltransferase, which gives lower resis-

tance. Combinations of mutations in rpoB, rpsL, or rsmG

typically leads to further enhancement of antibiotic pro-

duction [106, 142, 144]. The ribosome engineering tech-

nology proved to be successful in the activation of Act

production in S. coelicolor and S. lividans, but was also

successful in triggering antibiotic production in less well-

studied actinomycetes, such as the production for novel

piperidamycins by S. mauvecolor triggered by a number of

different rpoB or rpsL mutations [56]. The wide application

is further demonstrated by the fact that production of the

normally silent amino sugar antibiotic 3,30-neotrehalos-

adiamine (NTD) by the firmicute Bacillus subtilis was

activated by an rpoB mutation [61]. Inducing resistance to

several other antibiotics such as gentamicin, erythromycin,

and capreomycin also activated antibiotic production, and

resistance to these structurally diverse antibiotics typically

relates to deletion or expression of an rRNA methyltrans-

ferase [63, 80, 134]. A major advantage from the appli-

cation point of view is that introducing antibiotic resistant

mutations can be done by a straightforward selection pro-

cedure, rather than by introducing specific mutations, and

the technology therefore finds wide application [2, 13, 106,

120, 155]. For further details, we refer to the review by

Ochi and colleagues elsewhere in this issue.

Ecological considerations and co-cultivation

If we are to activate silent antibiotic gene clusters, then

understanding of their biological role is of major impor-

tance. Streptomycetes grow as a branched multicellular

network of hyphae—the vegetative or substrate myce-

lium—and reproduce through spores that are formed by a

specialized aerial mycelium. The onset of development is

triggered by stress conditions such as drought or famine. A

proportion of the vegetative mycelium lyses following a

process of programmed cell death [83], which releases

nutrients that presumably form the building blocks for the

sporulation process. For a detailed description of the con-

trol of morphological differentiation of streptomycetes, we

refer to excellent reviews elsewhere [27, 41, 52]. It is likely

that the release of nutrients in an otherwise depleted

environment attracts competing microbes, and it is logical

to perceive the production of antibiotics as a defense

mechanism. Indeed, many antibiotics are produced at a

time correlating to the onset of development [16, 17, 151].

A major issue connected to existing strain collections is

that they are just that, collections, i.e., the microorganisms

have been taken out of their ecological context, and the

strains are typically screened individually. Inevitably, in

nature, many antibiotics will only be produced after receipt

of specific signals, such as from the environment (stress) or

from surrounding microbes (symbionts or competitors).

Novel molecular ecological methods should aid us in

understanding and identifying the triggers that activate the

production of antibiotics in nature, which explains the

rapidly growing interest in soil and marine ecology related

to the production of antibiotics in the natural habitat. The

original view that antibiotics are purely antagonistic, acting

in nature as they do in the clinic, has recently been ques-

tioned [77, 121, 127]. First, the concentrations of antibi-

otics in the soil are argued to be too low to be efficacious.

Second, sub-inhibitory concentrations of antibiotics induce

novel phenotypic and genetic responses in exposed

organisms, including increased biofilm formation and

expression of virulence genes. Thus antibiotics may also

act as ‘‘collective regulators of the homeostasis of micro-

bial communities’’, in others words act as signals or cues

rather than weapons [77, 121]. Antibiotics acting as signals

enable symbiotic relationships between different organ-

isms, each benefiting from either nutrition or protection.

The way microbes influence each other has recently been

beautifully displayed by Pieter Dorrestein and colleagues,

who used imaging mass spectrometry to visualize secondary

metabolites and signaling molecules produced by microbes

grown in close proximity [68, 158, 167]. The power of this

technology is that—in particular with increasing resolution—

it may directly identify new chemical elicitors that activate

antibiotic production by actinomycetes.

Co-cultivation of different bacterial species was applied

successfully to activate the expression of novel antibiotics.

The novel antimicrobial alchivemycin A was produced via

the co-cultivation of Tsukamurella pulmonis TP-B0596, a

mycolic acid-containing bacterium, together with Strepto-

myces endus S-522. It was proposed that mycolic acid

located in the outer cell layer of Tsukamurella induced

secondary metabolism in Streptomyces [113]. A competi-

tion-based adaptive assay has recently been developed,

encouraging the evolution of an organism to produce

antimicrobials via serial co-cultivations with a target

pathogenic bacterium such as MRSA. Results revealed the

activation of the anti-staphylococcal agent holomycin

when Streptomyces clavuligerus was co-cultured with

MRSA for consecutive passages until significant bioactiv-

ity was elicited [26]. While perhaps not feasible in larger

screening efforts, such pair-wise interactions may identify

important cues and triggers for poorly expressed antibiotics

in actinomycetes, which may find wider application.

Chemical elicitors of antibiotic production

With the promise of finding novel antibiotics, the explo-

ration of elicitors able to activate the expression of silent

antibiotic biosynthetic gene clusters has begun, aimed at
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optimal exploitation of the seemingly enormous potential.

This section highlights some of the recent advances in this

promising line of research.

N-acetylglucosamine and the DasR regulon

A signaling cascade from an extracellular nutrient to the

activation of antibiotic production was elucidated in

S. coelicolor, which is based on the derepression of the reg-

ulon of the GntR-family regulator DasR. Higher concen-

trations of the cell-wall component N-acetylglucosamine

(GlcNAc; 5–10 mM) trigger development and antibiotic

production under poor growth conditions (‘‘famine’’),

while they activate development under rich (‘‘feast’’)

conditions (Fig. 2a; [125]). The final receptor of the Glc-

NAc-derived signal is DasR. GlcNAc is imported via the

PEP-dependent phosphotransferase system PTS [102, 103],

and subsequently metabolized to glucosamine-6-phosphate

(GlcN-6P), an important starter molecule for cell-wall

biosynthesis (Fig. 1). GlcN-6P is a ligand for DasR by

binding to its effector binding site and thereby reducing the

protein’s affinity for DNA [124]. This is not unexpected, as

GlcN-6P stands at the crossroads of (GlcNAc)n degrada-

tion, GlcNAc transport, and intracellular metabolism, gly-

colysis, nitrogen and lipid metabolism, as well as

peptidoglycan synthesis [4, 84], and many genes of these

pathways are subject to control by DasR. A complete sig-

naling pathway was established from import of a signal

(GlcNAc; first step) to the activation of pathway-specific

regulatory genes (actII-ORF4, redZ; final step), see Fig. 1.

Interestingly, AtrA appears to counteract DasR, by having

opposite actions on the start and end of this signaling

pathway. While DasR represses transcription of the genes

for the GlcNAc-specific transporter NagE2 (signal import)

and for ActII-ORF4 (antibiotic activation), both of these

genes are transcriptionally activated by AtrA [103].

The transcription of all known chromosomally encoded

antibiotic biosynthetic clusters of S. coelicolor (act, cda,

red, and the ‘‘cryptic’’ cpk cluster) is enhanced in dasR

mutants [125], while DasR also controls siderophore pro-

duction [32]. Therefore, manipulating the activity of DasR

should potentially allow triggering the expression of anti-

biotics. Indeed, growth of S. coelicolor on minimal media

agar plates containing only GlcNAc as the carbon source

accelerated development and enhanced antibiotic produc-

tion, and this was also observed for a number of other

actinomycetes [125, 152]. An example is presented in

Fig. 2c, which shows the effect of GlcNAc on antibiotic

production by six streptomycetes. Interestingly, the cpk

cluster for the cryptic type I polyketide synthase Cpk is

also induced by the addition of N-acetylglucosamine [125].

This provides one example of novel approaches that may

be employed to boost the potential of novel screening

procedures. Alternatively, creating mutants in the nag

metabolic genes disturbed GlcNAc metabolism in such a

way that metabolic intermediates accumulated intracellu-

larly, resulting in increased antibiotic production [141].

It should be noted, however, that GlcNAc and glutamate

are also important carbon and nitrogen sources for strep-

tomycetes, and glutamate is preferred over glucose by

S. coelicolor [102, 150]. The fact that GlcNAc and its

direct metabolic derivatives promote growth may explain

why the compound suppresses antibiotic production in a

number of actinomycetes, even though it activates the

production in others.

Chemical elicitors that modulate fatty acid biosynthesis

Besides GlcNAc, other molecules that result from macro-

molecule recycling should also be considered as elicitors,

such as nucleotides from DNA and RNA, oligopeptides

and amino acids from proteins, sugars from polysaccha-

rides (including extracellular matrix EPS and LPS) and

fatty acids from lipids. Interestingly, a recent screen by

Justin Nodwell and colleagues of a chemical library of

around 30,000 small molecules for compounds that can act

as elicitors of antibiotic production, revealed a family of

molecules that act by modulating fatty acid biosynthesis,

referred to as antibiotic remodeling compounds (ARCs;

[33]), which show similarity to the structure of the furan-

like antibiotic triclosan (Fig. 3). Of the ARCs, ARC2 was

the most active one. It acts via inhibition of the enoyl-acyl

carrier protein reductase FabI, which is a key enzyme of

type II fatty acid biosynthesis. Secondary metabolism and

fatty acid biosynthesis compete for the common substrate

acetyl-CoA, and ARC2 may act via the partial inhibition of

FabI, thus allowing a preferential flow of acetyl-CoA to

antibiotic production [33, 107].

However, besides interfering with fatty acid metabo-

lism, triclosan is also known to affect quorum sensing and

auto-induction mechanisms [38], which mediate cell–cell

communication. Quorum sensing-regulated genes were

among the most strongly downregulated genes in triclosan-

treated Pseudomonas aeruginosa cells [28]. In streptomy-

cetes, quorum sensing-like communication is mediated by

c-butyrolactones, and these play a role in the control of

antibiotic production (see next section), and triclosan might

also act by interfering with this system.

Extracellular signaling molecules

Microbial, hormone-like, small diffusible molecules known

as c-butyrolactones play a role in the communication

between actinomycetes in the soil, controlling development

and antibiotic production (recently reviewed in [57, 133,

161]. The best known example is A-factor (Fig. 3), a
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diffusible autoregulatory signaling molecule that controls

development and streptomycin production in S. griseus at

very low concentrations [55, 110]. The key enzyme that

mediates the biosynthesis of A-factor is the product of the

afsA gene product [65]. When A-factor reaches a critical

level it binds to the TetR-family regulator ArpA, which

consequently dissociates from the adpA promoter, thereby

alleviating its repression. In turn, AdpA then glob-

ally trans-activates developmental and antibiotic genes

[110]. Antimicrobial regulatory systems that involve

c-butyrolactones have been discovered in many Streptomyces

species, controlling among others the production of

Lankacidin and Lankamycin in Streptomyces rochei [165],

virginiamycin production in Streptomyces virginiae [66],

showdomycin and minimycin in Streptomyces lavendulae

[69], auricin production by Streptomyces aureofaciens

[104], and the biosynthesis of the type I modular polyketide

Cpk in S. coelicolor A3(2) [34]. The activation of many

other antibiotics is likely also mediated through c-butyro-

lactones. A second afsA-like gene, mmfL, occurs in

Fig. 2 Medium-dependent activation of antibiotic production by

elicitors. Increasing concentrations of GlcNAc (a) or sodium butyrate

(NaBu; b) repress antibiotic production and development under rich

growth conditions (R5 agar plates; ‘‘feast’’) and activate develop-

mental processes in cultures grown under poor conditions (MM agar

plates; ‘‘famine’’). GlcNAc acts by interfering with the activity of

DasR, while NaBu is known to target histone deacetylase (HDAC).

The blue pigment is the polyketide antibiotic actinorhodin, spores are

grey-pigmented. c Effect of GlcNAc on antibiotic production by six

selected streptomycetes. The strains were grown on minimal medium

agar plates with mannitol (1 % w/v) or N-acetylglucosamine (25 mM)

as the sole carbon source. Bacillus subtilis was used as indicator

strain. Halos correspond to antibiotics produced by the streptomy-

cetes. Note that N-acetylglucosamine inhibits antibiotic production by

S. roseosporus. Fig. 2a, c based on [125], Fig. 2b adapted with

permission from [96]

ARC2 

N-acetylglucosamine Na-butyrate

A-factor

triclosan

PI-factorMMF2

Fig. 3 Chemical elicitors of

antibiotic production. Chemical

structures are presented for

known elicitors of antibiotic

production and related

molecules. For details, we refer

to the relevant sections on

chemical elicitors in the text
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S. coelicolor, which is involved in the biosynthesis of

methylenomycin furans (MMFs; Fig. 3), controlling a

signaling pathway involved in regulation of methyleno-

mycin biosynthesis. Like GBLs, MMFs are synthesized via

a butenolide intermediate [31].

Conceivably, c-butyrolactones may be applied for drug

discovery, as shown by surprising antibiotic stimulation in

Streptomyces natalensis by the addition of A-factor from S.

griseus. S. natalensis produces the autoinducer molecule PI

factor (2,3-diamino-2,3-bis (hydroxymethyl)-1,4-butane-

diol; Fig. 3), which is required for the activation of

pimaricin production in this organism [123]. Pimaricin is a

26-membered macrolide tetraene with antifungal activity

[7]. Mutants that fail to produce PI factor can not only be

restored to produce pimaricin by the addition of PI factor

itself, but also by A-factor. While PI factor has a stronger

stimulatory effect than A-factor, the cross-complementarity

is remarkable. Another example of overlapping signaling

routes was found for A-factor and the signaling protein

Factor C [19] from Streptomyces flavofungini (originally

regarded as a variant of S. griseus), although this time it is

the lack of A-factor that is complemented. Factor C fully

restored normal development and streptomycin production

to an A-factor nonproducing strain (AFN) of S. griseus,

even though S. griseus does not produce Factor C itself

[20]. Factor C restored wild-type levels of A-factor pro-

duction to the AFN mutant via a yet-unknown mechanism

[18], and elucidation of this mechanism should shed new

light on the way A-factor production is induced.

Little is yet known about possible application of these

signaling molecules as global elicitors of antibiotic pro-

duction, but considering their activity at very low con-

centrations this is an interesting approach to follow.

Approaches to apply GBLs and MMLs for the activation of

antibiotic production were recently proposed by Corre and

coworkers [133], and the effect of the furan-like triclosan

and the related ARC molecules (previous section) is further

support for this conceptual idea.

Rare earth elements

Rare earth elements (REEs) have recently been implicated

as activators of poorly expressed secondary metabolites

[106, 108]. Scandium and/or lanthanum enhanced the

production of actinomycin, actinorhodin, and streptomycin

by two- to as much as 25-fold at 10–100 lM concentra-

tions in Streptomyces antibioticus, S. coelicolor, and S.

griseus, respectively. Moreover, scandium also activated

actinorhodin in S. lividans [67, 143] and amylase and ba-

cilysin production in B. subtilis [60]. REEs are widely

distributed and microorganisms respond to their presence

in their environment. Addition of REEs, and in particular

scandium [106], during screening, may be a useful addition

to the array of tools researchers have at their disposal to

elicit the production of antibiotics.

HDAC inhibitors

Another recent addition to the arsenal of chemical elicitors

are inhibitors of histone deacetylases or HDACs. Mole-

cules that affect histone acetylation, and thereby change

chromatin structure, were shown to activate biosynthetic

clusters for natural products in fungi [21, 138]. HDACs

antagonize the acetylation of histones in eukaryotes, lead-

ing to alterations in chromosome structure and thus

affecting gene expression [137]. HDAC proteins are

widespread and many are found in bacteria [76], with three

HDAC-like genes identified in S. coelicolor [96]. Analysis

of the effect of sodium-butyrate, a well-known HDAC

inhibitor (Fig. 3), on antibiotic production by S. coelicolor

showed a major effect on actinorhodin production [96].

Surprisingly, the response of S. coelicolor displayed a

similar context-dependence as previously observed for

N-acetylglucosamine [125], namely enhanced production

of actinorhodin on minimal media (‘‘famine’’) and repres-

sion under rich (‘‘feast’’) growth conditions (Fig. 2b; [96]).

Whether there is a correlation between the mechanisms by

which N-acetylglucosamine and sodium-butyrate enhance

antibiotic production awaits further investigation.

Genome mining

PKS and NRPS gene clusters can be readily identified

using bioinformatics, and the natural products they specify

can be predicted based on protein domain structures [9,

73]. In recent years, there has been a great expansion in

bioinformatics programs enabling the identification of

genes involved in secondary metabolite production. This

includes ANTIbiotics and Secondary Metabolite Analysis

SHell (antiSMASH) [93] and Secondary Metabolite

Unknown Regions Finder (SMURF), which facilitate the

automated detection of secondary metabolite biosynthesis

gene clusters in genome sequence assemblies. Other soft-

ware packages, such as CLUster SEquence ANalyzer

(CLUSEAN), ClustScan, Structure Based Sequence Anal-

ysis of Polyketide Synthases (SBSPKS), NRPSPredictor,

and Natural Product searcher (NP.searcher), enable the

identification of secondary metabolite backbone biosyn-

thesis genes [40]. Other packages include the NORINE

database for nonribosomal peptides [23] and BAGEL,

which is specific for the identification of biosynthetic

clusters for bacteriocins and lantibiotics [35].

The rapid decline in cost made genome sequencing a

feasible strategy for identification of gene clusters. Helped

by the new software tools that have become available,
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thousands of gene clusters have now been identified, and

many more have undoubtedly been elucidated outside the

public domain. However, how can we efficiently deal with

this wealth of information? Expressing them one by one is

like looking for the proverbial needle in a haystack, so how

can we identify those clusters that may qualify as pro-

ducing novel compounds? Following the initial excitement

of the massive amount of new cluster data, we should not

just focus on identifying homologs of known biosynthetic

gene clusters. Instead, we should make use of computa-

tional techniques to intelligently sieve through the data for

interesting new biochemistry. For example, all gene clus-

ters may be subdivided into families using an evolutionary

distance metric (Cimermancic, Medema, Fischbach et al.,

unpublished data). This allows one to focus on families

without gene clusters encoding the biosynthesis of known

compounds. Alternatively, one could focus on families that

contain gene clusters with entirely novel combinations of

homologs of well-known enzymes. Such gene clusters are

likely associated with specific types of regulatory genes

and/or regulatory elements, as well as genes for modifying

enzymes and transporters. Genomic, transcriptomic, and/or

proteomic data may be used as further support, e.g., to

select those clusters that appear poorly expressed under

routine growth conditions. Here we look at cis-acting ele-

ments and specific regulatory genes that may act as so-

called ‘‘molecular beacons’’ [11], which may point scien-

tists in the right direction in their search for novel antibiotic

biosynthetic gene clusters.

Regulatory elements as beacons

In terms of scanning the genomes of yet un(der)explored

streptomycetes, following the distribution of regulatory

elements for global antibiotic regulators may be a useful

strategy. As an example, scanning the S. coelicolor genome

using the PREDetector algorithm [49] revealed some 200

sequences that conformed to the consensus binding site for

DasR (dre, for DasR responsive element), namely the

palindromic 16-bp consensus sequence A(G/C)TGGTCTA

GACCA(G/C)T. The DasR regulatory network is well

conserved in streptomycetes, with around 75 % of the

DasR-binding (dre) sites predicted in S. coelicolor also

found upstream of the orthologous genes in S. avermitilis

(Rigali, Titgemeyer and van Wezel, unpublished data and

[153]). Scanning genome sequences in the databases sug-

gested that DasR may control the biosynthesis of novel

antibiotics as well as important clinical drugs, includ-

ing clavulanic acid, chloramphenicol, daptomycin, and

teicoplanin.

A similar approach could be followed by analyzing

the distribution of the regulatory element of AtrA,

which among others controls actinorhodin production in

S. coelicolor [148]. AtrA recognizes the consensus

sequence cGGAA(T/C)(G/C)NNN(C/G)(A/G)TTCCg (are,

for AtrA-responsive element) and likely qualifies as a

global regulator (K.J. McDowall, pers. comm.). AtrA

occurs in all streptomycetes, its DNA binding domain is

extremely well conserved ([90 % aa identity), and an AtrA

orthologue activates streptomycin production in S. griseus

[50]. Following a similar approach to the DasR regulatory

network should reveal how the AtrA network associates

with (novel) secondary metabolite gene clusters. The same

is true for other regulatory networks.

Regulatory genes as beacons

mbtH-family genes and NRPS

The gene mbtH was identified in Mycobacterium tubercu-

losis within the NRPS gene cluster for mycobactin, a

peptide siderophore. The mbtH-like genes are widespread

in Streptomyces genomes, and some of the gene products

stimulate adenylation reactions by tightly binding to NRPS

proteins containing adenylation (A) domains. Their

expression may be important for the efficient production of

native and recombinant secondary metabolites produced

using NRPS enzymes [11]. As an example, vbsG, an mbtH

homolog in Rhizobium leguminosarum, is required for the

production of the cyclic, trihydroxamate siderophore vic-

ibactin [24]. Thus, mbtH homologs can be useful for

identification of specific types of NRPS gene clusters [11].

mmyB-family regulatory genes

The mmyB-like genes are also candidates as beacons for

antibiotic biosynthetic gene clusters. mmyB itself is a

transcriptional regulatory gene involved in the biosynthesis

of methylenomycin in S. coelicolor [105]. The crystal

structure of the MmyB-family regulator MltR from Chlo-

roflexus aurantiacus was resolved; the proteins consist of

an Xre-type N-terminal DNA-binding domain and a

C-terminal ligand-binding module that is related to the Per-

Arnt-Sim (PAS) domain, and these regulators most likely

bind complex fatty acid molecules as ligands that activate

their DNA binding activity [163]. Many mmyB-family

regulatory genes lie divergently transcribed from, and share

the promoter region with, genes related to antibiotic pro-

duction. There are eight in total in S. coelicolor, including

mmyB itself, which controls Mmy biosynthesis and

SCO6925, which lies next to a lantibiotic biosynthetic

cluster. The other genes are adjacent to a gene for an

NAD(P)H-dependent short- or medium-chain dehydro-

genases/reductase (SDR or MDR), a diverse family with

alcohol dehydrogenase as the best known example [64].

This suggestive linkage is conserved in actinomycetes,
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suggesting that the genetic association with antibiotic-

related genes appears to be widespread.

The mmyB-family gene SCO4944 is conserved in

streptomycetes and other actinomycetes, and may therefore

be seen as the main member of the family in actinomy-

cetes. Phylogenetic evidence suggests that SCO4944 may

control SCO4945, a gene for a mycothiol-dependent

formaldehyde dehydrogenase. Surprisingly, the orthologs

in S. griseus, SGR_6891 and SGR_6892, respectively, are

separated by one gene from afsA (SGR_6889) for A-factor

synthase, and their transcription is induced by A-factor

immediately after its addition to liquid-grown cultures [48],

suggesting that both genes are part of A-factor regulatory

cascade. Suggestively, MmyB binds furans as ligands,

which are structurally similar to A-factor.

Thus, mmyB homologs may form a very useful tool as

genetic beacon for the identification of antibiotic-related

genes in actinomycete genomes, and that searching for

large gene clusters with suggestive genes such as modify-

ing enzymes and transporters could be a fruitful strategy

for finding new candidate antibiotic biosynthetic clusters.

Final considerations

With next-generation sequencing technologies and the

increasing understanding of antibiotic regulation, new

strategies for ‘‘awakening’’ poorly expressed antibiotics are

becoming available. A combination of different regulatory

approaches should be considered for activating antibiotic

production, such as the application of elicitor molecules or

transcription stimulation, to enhance the expression of

novel biosynthetic gene clusters. Important approaches to

explore also lie in the direction of culture conditions. The

different methods range from strain-specific to globally

applicable (Fig. 4). One obvious problem with routine

screening methods is the absence of the natural competitors

and symbionts that are found in the natural habitat. Co-

cultivation methods or chemical mimicking of inter-species

communication are promising new approaches in the

search for novel antibiotics. One aspect that has obtained

surprisingly little attention is that while most scientists

search for novel antibiotics, the problem lies not so much

in the lack of antibiotics, but in the widespread resistance

that limits their application. The success story of clavulanic

acid as inhibitor of b-lactamases [114, 122] perfectly

illustrates the potential of such approaches. Therefore,

targeting antibiotic resistance should offer a very attractive

alternative to antibiotic discovery. We anticipate that

similar considerations as those described above for anti-

biotics will also be applicable to the activation of natural

products involved in counteracting antibiotic resistance

mechanisms.
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